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Two-soliton solutions of the Ernst equation 
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Received 6 May 1981 

Abstract. A connection between the Ernst equation and the chiral model on SL(2, R )  is 
established. The Belinsky-Zakharov inverse method is used to solve the Ernst equation. 
Two-soliton solutions of the Ernst equation are given. It is shown that the two-soliton 
solution obtained from the Minkowski space-time is the NUT generalisation of the Kerr 
solution. 

1. Introduction 

Progress in general relativity is closely connected with investigation of exact solutions 
for Einstein’s field equations. Because of the nonlinearity of Einstein’s equations, it is 
extremely difficult to generate sufficiently general classses of solutions. The existence of 
a symmetry group simplifies the problem but does not remove the nonlinearity of the 
equations. In our paper we investigate stationary and axisymmetric gravitational fields. 
Recently, several generating techniques have been worked out for this case. Kinnersley 
and co-workers have presented in a series of papers (Kinnersley 1977, Kinnersley and 
Chitre 1978a, b, Hoenselaers et a1 1979) an explicit representation for the infinite- 
dimensional Geroch group. Cosgrove (1980) has found a group Q outside the Geroch 
group which preserves asymptotical flatness of a space-time. Harrison (1978) and 
Neugebauer (1979) have applied a Backlund transformation to solve the field equations 
in the case of stationary and axisymmetric space-times. Finally, an ‘inverse method’ has 
been developed by Belinsky and Zakharov (1978,1979) and Hauser and Ernst (1979a, 
b, 1980). 

In our paper we apply the Belinsky-Zakharov method, which has been used by them 
for generating solutions of Einstein field equations in the stationary, axisymmetric case. 
However, we shall use the method to ‘dress’ a given Ernst potential i.e. to generate a 
new Ernst potential from a known one. 

In § 2 we show a connection between the Ernst potential 5 and the chiral model on 
SL(2, R) .  Since the method we use is very similar to the one described by Belinsky and 
Zakharov (1979), we present here only a short outline of it (§ 3). In § 4 we find and 
interpret two-soliton asymptotically flat solutions of the Ernst equation. 

2. Axisymmetric and stationary gravitational fields as a chiral model 

The Ernst equation is a compact complex formulation of the Einstein field equations in 
the case of axisymmetric and stationary metrics in the Papapetrou form. It can be 
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derived from a Lagrangian density: 

where V denotes the three-dimensional differential operator in cylindrical coordinates 
and 5 is a function of p and z .  The Lagrangian (2.1) is SU(1, 1) symmktric. Let us 
rewrite it in an O(2, 1) symmetric form (SU(1, 1) - SO(2, 1)). This can be realised by a 
hyperbolic analogue (Woo 1977 and Mazur 1980) of the stereographic projection: 

i w ' - w 2  
t =  l f w O  

where the real vector w a  ( a  = 0, 1, 2) is normalised to 1: 

T/ ,bWUWb = 1, T a b  = diag(1, -1, -1). (2.3) 

zu= V W a V W b T a b ,  (2.4) 

The Lagrangian density (2.1) in the new parametrisation has the form: 

Thus the problem can be treated as a nonlinear a-model which can be related to a 
completely integrable chiral model on SL(2, R)  with a constraint: 

g = gT, g E SL(2, R). (2.5) 

Let M := { w :  w ~ w ~ T , ~  = l}. Consider a map: 
1 

W O -  w 2  w 1  ) t S L ( 2 , R )  

The map establishes a 1 : 1 connection between M and a subset of symmetric matrices in 
SL(2, R) .  The choice of parametrisation for elements of the subset of SL(2, R )  reduces 
the Lagrangian density of the chiral model on SL(2, R )  to Tu (2.4) and the constraint 
(2.3) is fulfilled by the condition det g = 1. 

3. Integrability of the chiral model 

The model we consider leads to highly nonlinear field equations. In spite of this it is 
possible to find solutions. Namely we can take from the set of all solutions of the chiral 
field on GL(2, R) the solutions which belong to SL(2, R )  and satisfy the condition (2.5). 
We can do it since the field equations for the chiral model on GL(2, R)  are compatible 
with the conditions det g = 1 and (2.5). Integrability of the model will be understood in 
this sense. 

In the cylindrical coordinates p, z,  cp vectors w a and group elements g depend on p 
and z ;  therefore the field equations for the chiral model have the form: 

(3.1) 

Equation (3.1) was considered by Belinsky and Zakharov (1979). They elaborated a 
procedure which generates soliton solutions of (3.1) and preserves the required 
properties of g(det g = 1, reality and symmetry). 

In our paper we apply their procedure. For the reader's convenience we give below 
a summary of the Belinsky-Zakharov method; details and proofs can be found in 
Belinsky and Zakharov (1979). 

(Pg,pg-'),p + (Pg,zg-l),z = 0. 
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The generating technique for finding the soliton solutions of (3.1) consists in 
calculating a ‘new’ solution g from a known ‘old’ solution, go. This can be done as 
follows. One defines potentials U,, Vo: 

U0 = Pgo,pgol, vo = pgo,,g,’. (3.2) 

With the aid of U. and V, one can build a system of differential equations of first order 
(the Lax pair) for the 2 x 2 (in general complex) matrix ‘wavefunction’ qo: 

Here A is a complex ‘spectral parameter’. Differential operators D1, D2 are defined as 
follows: 

(3.4) 

From the set of solutions of (3.3) one chooses such a ‘wavefunction’ Vo that 

9 0 0  = 0, P, 2 )  = gob, 2). (3.5) 

Now ‘Po permits one to define two-dimensional vectors m ( k l  and N ( k l  (k = 1 ,2 ,  . . , , n ;  
n E N ) :  

The vectors mik’ form a system of arbitrary (in general complex) two-dimensional 
constant vectors. 

The p k  are functions defined by the formula: 

p k ( p ,  z ) = v k - 2 + & k [ ( V k - 2 ) 2 + P 2 ] 1 ’ 2 ,  (3.8) 
where parameters vk are in general complex and &k = *I. With the aid of m(kl  and N ( k )  
one can construct a matrix: 

(D-l)k[ = mck)’gom(’)(p2+ p k p [ ) - ’ ,  k , l = 1 , 2  , . . . ,  n (3.9) 
which gives a new solution 8 of (3.1): 

(3.10) 

If one assumes that m ( k l  and v k  are real, then the requirement for the reality of matrix 2 
is automatically fulfilled. However, one can admit the case of complex m ( k )  and v k  as 
well. Then the reality of 

V p  E {1,2, .  . . , n }  m y ’  = mo (‘I* , e p = s q .  (3.11) 

A symmetry of 2 is obviously satisfied in (3.10). The determinant of the matrix 2 is 
different from 1. However, it turns out that when n is an even number, the matrix: 

(3.12) 

is a solution of (3.1) and det g = 1. 
Thus, by means of the Belinsky-Zakharov method one can find a new solution g of 

the chiral model on SL(2, R ) .  Now, the connection between the chiral model and the (+ 

is satisfied by the conditions: 
* 3 q  E {1,2, .  . . , n}:  v, = v q ,  

g = - (det f)’”g 
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model we established in § 2 permits us to map the new g on ~ " ( p ,  z )  (2.6). The Ernst 
potential & may then be obtained from (2.2). 

4. Two-soliton solutions of the Ernst equation 

We shall use the procedure described above to find the two-soliton solution ( n  = 2) of 
the Ernst equation, starting from the Minkowski solution. For the Minkowski space- 
time [(&- 1 ) / ( ~  + 1) = 11 it is convenient to introduce the vectors w " ( a  = 0, 1 ,2)  from 
the Ernst potential 25 which is connected with 5 and wa by the formulae: 

From (2.6), (3.2) and (3.3) one can calculate go, Vo, U,, To: 

go=diag(-1, - l ) ,  v,= u,=0, WO = go, (4.2) 

and by means of (3.6)-(3.10) and (3.12) one obtains a new solution g. A new potential 6 
is obtained from (2.6) and (2.2). 

4.1. The case of real parameters 

In this case it is convenient to shift the origin of the coordinate z to a point in which 
o1 = v2 := U. If we introduce new parameters: 

= 2 
U1 

U2 (4.3) m p T m p  = 2 

mp"d"' = 
U I U Z  COS(cp1- c p 2 )  

and prolate spheroidal coordinates: 

5 takes on the simplest form. 
In the case = =: E we obtain the NUT generalisation of the Kerr solution: 

SL-NUT = expMcp 1 + cp2)l(px + iqy 1, (4.5) 

where p = sin(cp, - p2), q = cos(cp~ - 4. 
The case of = - E ~  := E can be obtained from (4.5) by complex cojugation. 

4.2. The case of complex parameters 

Without loss of generality we can take v 1  = u t  := iv. It is convenient to introduce real 
vectors n ,  and n2:  

mb" = nl  +inz  (4.6) 

and parameters U, b, c p l ,  cp2: 
2 2  nTnl = b U 

n;n2 = U' (4.7) 

nTn2 = bu2 cos(cpl - q2) .  
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In ‘oblate’ spheroidal coordinates: 

(4.8) 

a two-soliton solution of the Ernst equation is the NUT generalisation of the well known 
family: 

5 = (fix + iGy) ei@ (4.9) 

where: 

Parameters a, q, p”, 4 are defined by the formulae: 

(4.10) 

(4.11) 

One obtains the solution (4.9) from the Kerr solution by the substitution x + ix, p -+ -ifi. 
We have shown that the Ernst equation can be integrated by means of the 

Belinsky-Zakharov inverse method. The method permits one to construct the n- 
soliton solution (where n is an even number) from a given known potential e,,. 

The described connection between the Ernst equation and the chiral model on the 
SL(2, R )  allows one to apply the non-soliton sector of the set of solutions of the Ernst 
equation. 
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